What is Data?
Before we understand databases, we need to understand the concept of data. Data is collection of facts about the object of interest. For e.g. data about an employee would include information like name, address, age, educational qualifications etc. Software Applications need to store data as it is required to answer a question e.g. how many employees are above 40 years of age? Data is also required to convey a story e.g. why are we successful as an organization?
Data is raw, just a set of facts which by itself does not convey anything. We need to understand patterns between factual data and give it a meaning. This is called information which helps us with answers to questions like who, when, what, where etc. Synthesis of data and information leads us to answer the how question and take business decisions. This is referred to as Knowledge.
[image: What is Data?]

Requirements From Data :
Software Applications that use data are expected to meet several requirements from end users. Let us take the example of Facebook application.
	Requirement
	Description

	Integrity
	Data should be accurate e.g. my facebook profile should contain valid country name.

	Availability
	I should be able to access facebook and see my data at all times.

	Security
	Only my friends should be able to see my posts and no one else.

	Independent of Application
	I should be able to access the same data from my Android app as well as from web browser on my laptop.

	Concurrent
	All my friends should be able to see my posts at the same time.

What is DBMS ?
A Database is a shared collection of logically related data and description of these data, designed to meet the information needs of an organization
A Database Management System is a software system that enables users to define, create, maintain, and control access to the database. Database Systems typically have high cost and they require high end hardware configurations.
An Application Program interacts with a database by issuing an appropriate request (typically a SQL statement)
[image: What is Data?]
DBMS Functions :
Database Management Systems offer several functions that help us overcome problems associated with file based systems. We will focus on Data Management, Integrity, Transaction and Concurrency in this course. Security, Recovery and Utilities are out of scope for this introductory level course.
[image: What is Data?]
Relational Database Management System :
Relational Databases store data in relations i.e. tables. Each relation must have a name.
[image: Image by Shan]

An attribute is a named column of a relation. It stores a specific information about an object e.g. salary.
[image: Image by Shan]
A tuple is a row in a relation. It represents relationship between attributes that can contain single value.
[image: Image by Shan]
Prev
Cardinality of relation is the number of rows it contains. e.g. Cardinality of relation below is 4.
[image: Image by Shan]

Degree of relation is the number of attributes it contains. e.g. Degree of relation below is 5.
[image: Image by Shan]
NULL represents the value of an attribute that is currently unknown or not applicable.
[image: Image by Shan]

A domain is the set of allowable values for one or more attributes.
[image: Image by Shan]
A collection of relations with distinct relation names is called as Relational Model.
[image: Image by Shan]
Prev

Flat Files :
Data is stored in flat files and can be accessed using any programming language. The file based approach suffers following problems:
1. Dependency of program on physical structure of data
2. Complex process to retrieve data
3. Loss of data on concurrent access
4. Inability to give access based on record (Security)
5. Data redundancy
Data Integrity :

Data integrity refers to maintaining and assuring the accuracy and consistency of data over its entire life-cycle. Database Systems ensure data integrity through constraints which are used to restrict data that can be entered or modified in the database. Database Systems offer three types of integrity constraints:
	Integrity Types
	Definition
	Enforced Through

	Entity Integrity
	Each table must have a column or a set of columns through which we can uniquely identify a row. These column(s) cannot have empty (null) values.
	PRIMARY KEY

	Domain Integrity
	All attributes in a table must have a defined domain i.e. a finite set of values which have to be used. When we assign a data type to a column we limit the values that it can contain. In addition we can also have value restriction as per business rules e.g. Gender must be M or F.
	DATA TYPES,
CHECK CONSTRAINT

	Referential Integrity
	Every value of a column in a table must exist as a value of another column in a different (or the same) table.
	FOREIGN KEY

[image: https://lex.infosysapps.com/fastrack/generic/dbms/images/integrity-types.png]
Candidate Key :
A Candidate Key is a minimal set of columns/attributes that can be used to uniquely identify a single tuple in a relation. Candidate Keys are determined during database design based on the underlying business rules of the database. Consider the following relation in context of a business firm:
Employee(EmployeeNo, Name, AadharNo, Salary, DateOfBirth)
Let us try to identify some candidate keys for this relation
	Key
	Rationale

	EmployeeNo
	This seems to be a good candidate key as companies usually issue a unique number for each employee.

	AadharNo
	This seems to be a good candidate key for a company based in India. However we have assumed that every employee has an Aadhar number which may not be true. In addition for a multinational firm with employees across the globe this will not work at all.

	Name, DateOfBirth
	This might work for a small firm of 10 people as a combination of Name and Date of Birth is likely to be unique.

	Salary
	This is not a good candidate as salary is generally paid uniformly to people at same level.

	EmployeeNo, DateOfBirth
	It is not a candidate key as EmployeeNo alone is unique. By definition only minimal set of attributes can be candidate key.

Thus the choice of candidate key depends upon the business context

Primary Key :
Primary key is the candidate key that is selected to uniquely identify a tuple in a relation. The mandatory and desired attributes for a primary key are:
	Mandatory
	Desired

	must uniquely identify a tuple
	should not change with time

	must not allow NULL values
	should have short size e.g. numeric data types

Let us identify the primary key from the previous example:
Employee(EmployeeNo, Name, AadharNo, Salary, DateofBirth)
	Key
	Rationale

	EmployeeNo
	Good candidate as it is numeric, cannot be null and does not change with time.

	AadharNo
	It will be null for people who do not have Aadhar number. Hence it cannot be considered as primary key.

	Name, DateOfBirth
	Both Name and DateOfBirth cannot be null. However even if uniqueness is guranteed, it is not a good choice due to large size.

When two or more columns together identify the unique row then it's referred to as Composite Primary Key. The combination of Name and DateOfBirth if selected as a primary key would be a composite primary key.

Foreign Key :
A foreign key is a set of one or more columns in the child table whose values are required to match with corresponding columns in the parent table. Foreign key establishes a relationship between these two tables. Foreign key columns on child tables must be primary key or unique on the parent table. The child table can contain NULL values. Let us take Employee and Computer tables as provided below:
[image: https://lex.infosysapps.com/fastrack/generic/dbms/images/foreign-key.png]
Computer is the parent table with CompId as the primary key. Employee is the child table with Id as the primary key. If we want to allocate a maximum of one computer to an employee then CompId must be made the foreign key in the Employee table. It can only contain values that are present in Computer table or no values at all. We cannot allocate a computer that does not exist to an employee.
Additionally multiple rows in the child table can link to the same row of the parent table dependening upon the type of relationship.

E-R Diagram :
Jack is part of database team and he needs to present the database design to business users. The business users are non-technical and it's difficult for them to read a verbose design document. What can Jack do? Jack needs to use an Entity Relation (ER) Model.
ER model is a graphical representation of entities and their relationships which helps in understanding data independent of the actual database implementation. Let us understand some key terms used in ER Modelling.
	Term
	Definition
	Examples

	Entity
	Real world objects which have an independent existence and about which we intend to collect data.
	Employee, Computer

	Attribute
	A property that describes an entity.
	Name, Salary

A sample ER Diagram representing the Employee entity along with its attributes is presented below:
[image: https://lex.infosysapps.com/fastrack/generic/dbms/images/er-model-01.png]
What is Relationship?
Relationships are association of one entity with another entity. Each relationship has a name e.g. a Computer is allocated to an Employee.
[image: Image by Shan]
There can be more than one relationship between entities, e.g. an Employee works in a Department while the head of department (also an employee) manages a Department.
[image: Image by Shan]
A relationship can also exist between instances of same entity, e.g. an Employee reports to another Employee.
[image: Image by Shan]
1 :1 Relationship :
1:1 relationship represents association between single occurrence of one entity and a single occurrence of the second entity. For e.g. consider a company where each employee can be allocated a maximum of 1 computer and computers are not shared between employees.
[image: https://lex.infosysapps.com/fastrack/generic/dbms/images/cardinality-1-to-1.png]
The Allot_Dt attribute is not a property of employee or computer. It belongs to the relationship and is hence represented differently in the ER Model.
We can see that employee table has two additional attributes - CompId and Allot_Dt. CompId is a foreign key to establish the link between these two tables. Allot_Dt which is the attribute of the relationship is always stored in the table that has the foreign key.
Alternatively we could also have added Id and Allot_Dt attributes in computer table to establish the link.
1 : N Relationship :
1 : N relationship represents association between single occurrence of one entity and multiple occurrences of second entity. For e.g. consider a company where each employee can be allocated many computers but still computers cannot be shared between employees.
[image: Image by Shan]
In 1 : N relationships, the foreign key and relationship attributes are always added to the many (N) side of the relationship. Hence these attributes are added to Computer table. The reverse solution will not work.

Many to Many :
M:N relationship represents association between multiple occurrences of both entities. For e.g. consider a company where each employee can be allocated many computers and computers can be shared between employees.
[image: Image by Shan]
In M : N relationships, the relationship is represented by a completely new table that has a composite primary key. Such a structure requires two foreign keys on the new table linking to the primary keys of each of the parent tables. The attribute of the relationship resides on this new table.

Cardinality Relationship :
Cardinality of relationship is the number of instances in one entity which is associated to the number of instances in another. For the relationship between Employee and Computer, it helps us answer questions like how many computers can be allocated to an employee, can computers be shared between employees, can employees exist without being allocated a computer etc. e.g. if 0 or 1 computer can be allocated to 0 or 1 employee then the cardinality of relationship between these two entities will be 1:1.
Cardinality of relationships are of three types: 1:1, 1:N and M:N.
[image: Image by Shan]
A relationship with cardinality 1:1 is also called as one-to-one relationship or 1:1 relationship.
Some entites in the context of Infosys are Employee, Computer, Project, Salaried Account. Can you identify relationships and cardinality for these relationships?

Crow Foot Relationship :
Crow foot notation is one of the ways to represent cardinality of relationship in an ER Model. The notation comprises of four symbols and one of them need to be used for each entity in a relationship.
[image: https://lex.infosysapps.com/fastrack/generic/dbms/images/crow-feet-notation.png]
Let us say the relationship between employee and computer is such that a computer must be allocated to one and only one employee but an employee can be allocated zero or any number of computers. Such a relationship is represented by the diagram below:
[image: https://lex.infosysapps.com/fastrack/generic/dbms/images/crow-feet-example.png]

Foreign key Relationship :
Foreign keys need to be created in tables in order to establish relationship between entities.
[image: Image by Shan][image: Image by Shan][image: Image by Shan]
The table in which foreign key will be created depends upon the cardinality of relationship. Let us now discuss about types of cardinalities and how it impacts foreign key creation.

SQL Query Language:
Structured Query Language (SQL) is used to manage data in all relational databases like DB2, Oracle, SQL Server etc. SQL standards are maintained by ISO. While most database products comply with the ISO standard, they also offer additional proprietary features. In this course we will restrict ourselves to feature set offered by Oracle database.
[image: SQL Commands]

Data Definition Language :
Data Definition Language is used to specify the structure i.e. schema of a relational database. DDL provides commands for creation, modification and deletion of various database objects like tables, views, stored procedures, indexes, constraints etc. The output of DDL is placed in data dictionary which contains metadata i.e. data about data.
[image: SQL Commands]

Data Manipulation Language :
Data Manipulation Language enables users to access or manipulate data in a relational database. DML provides commands for retrieval, creation, deletion and modification of information in a database. DML requires a user to specify what data is needed without specifying how to get it. The database engine is left to figure out effective means of retrieving data.
[image: SQL Commands]
Data Control Language :
Data Control Language enables users to provide access to various database objects like views, tables, stored procedures etc. in a relational database. Typically only DBAs have access to grant and revoke privileges. Whenever a user submits a query, the database checks against the granted privileges and rejects the query if it is not authorized.
[image: SQL Commands]

Transactional Control Language :
Transaction Control Language specifies commands for beginning and ending a transaction. A transaction consists of a sequence of SQL statements that are applied in an atomic (all or none) manner. A commit makes all the changes applied by the transaction permanent on the database while a rollback undoes all the changed applied by the transaction.
[image: SQL Commands]
All SQL Basics :
To summarize, Structured Query Language (SQL) provides four types of languages based on type of operation to be performed on a database. These languages can be considered as subsets of SQL and logical groups only. Physically commands for all these languages are executed from the same interface provided by the database.
[image: SQL Commands]

What is difference Between Char and Varchar 2?
SQL supports two character data types for storing printable and displayable characters. They are used for storing information like name, address, description etc.
	
	CHAR(n)
	VARCHAR2(n)

	Useful for
	Storing characters having pre-determined length
	Storing characters whose length vary a lot

	Storage size
	size for n characters
	size for actual no. of characters + fixed size to store length

	Storage Characteristic
	Trailing spaces are applied if data to be stored has smaller length than n.
	Trailing spaces are not applied.

	Maximum size
	2000 bytes
	4000 bytes

	Example
	A CHAR(10) field will store "Hello" as 10 bytes by appending 5 trailing spaces.
	A VARCHAR2(10) field will store "Hello" as 7 bytes (assuming 2 bytes to store length).

	Alternate Name
	CHARACTER(n)
	CHARACTER VARYING(n)

What is mean by Integral Datatypes?
SQL supports SMALLINT, INTEGER and INT data types that are used for storing whole numbers. Unlike other databases Oracle does not define different size limits for them. They are all treated internally to have 38 digit of precision. Some real life examples of values are provided below:
	Example
	Value

	Height of Mount Everest in meters
	8848

	Length of Great Wall of China in meters
	885000

	Average distance of Earth from the Sun in meters
	150000000000

SQL, unlike programming languages, does not provide support for arbitrary length numbers i.e. numbers not bound by size limits. For e.g. Python supports bignum and Java supports BigInteger data types.
What is mean by Non-Integral Datatypes?
Nonintegral data types have an integer part and a fractional part. Either NUMERIC, DECIMAL or NUMBER data types can be used to store nonintegral numbers.
[image: Precision and Scale]
Scale is the number of digits allowed after the decimal point. Precision is the total number of significant digits i.e. digits both before and after the decimal point. If Scale is not provided then NUMBER datatype can be used to store integral values.
What is mean by Miscellaneous data types?
SQL supports following data types for representing date and large objects:
	Data Type
	Useful for

	DATE
	Storing date data where time portion is not required. For e.g. Date of Birth, Date of Joining a Company etc. The default format in which date needs to be specified is DD-MON-YY.

	TIMESTAMP
	Storing date data with precision up-to 1 billionth (9 digits) of a second. Timestamps are typically used as audit fields in database to record the exact time when a transaction occurred.

	CLOB (Character Large Object)
	Storing large character based data which cannot be stored in VARCHAR2 due to its 4000 bytes size limit.

	BLOB (Binary Large Object)
	Storing large binary data like movies, images with size up to 4GB.

Here are some key events and their dates from history:
	Data Type
	Example
	Value

	DATE
	Date Infosys was founded
	02-JUL-81

	TIMESTAMP
	Date Apollo 11 landed on the moon
	20-JUL-69 08:18:00.000000 PM

	
	
	

Different Operators of SQL?
Arithmetic Operators
	Operator
	Symbol
	Usage
	Result

	Addition
	+
	15 + 5
	20

	Subtraction
	-
	15 - 5
	10

	Multiplication
	*
	15 * 5
	75

	Division
	/
	15 / 5
	3

Comparison Operators
	Operator
	Symbol
	Usage
	Result

	Equal to
	=
	15 = 5
	false

	Not equal to
	<>
	15 <> 5
	true

	Greater than
	>
	15 > 5
	true

	Greater than equal to
	>=
	15 >= 5
	true

	Less than
	<
	15 < 5
	false

	Less than equal to
	<=
	15 <= 5
	false

There is one important difference between Equal To comparison operator in programming languages and SQL. While SQL uses a single '=', programming languages typically use double '=' to distinguish it from the assignment operator.
	Operation
	Python Operator
	SQL Operator

	Assignment
	=
	=

	Equality check
	==
	=

Logical Operators :
Other Comparison Operators
	Operator
	Symbol
	Usage
	Example

	Range
	BETWEEN <lower limit> AND <upper limit>
	Matches value between a range of values (Both inclusive)
	Salary BETWEEN 2500 AND 3000

	List
	IN (List of values)
	Matches any of a list of values
	Dept IN ('IVS', 'ETA', 'ICP')

	String pattern matching
	LIKE
	Matches a character pattern
	SupplierId LIKE 'S%'

	NULL Test
	IS NULL
	Is a null value
	Bonus IS NULL

Logical Operators
	Operator
	Symbol
	Usage
	Example

	And
	AND
	Returns TRUE if both conditions are true
	Salary >= 30000 AND Dept = 'ETA'

	Or
	OR
	Returns TRUE if any one of the condition is true
	Salary > 75000 OR Dept = 'ICP'

	Not
	NOT
	Returns TRUE if following condition is false
	Id NOT IN (2,3)

Expressions :
Similar to arithmetic expressions in programming languages, SQL expressions are created from constant values, operators and brackets. They evaluate to a single value and are used in SELECT and WHERE clauses. Some examples are provided below:
[image: https://lex.infosysapps.com/fastrack/generic/dbms/images/expression.png]
Create Table and Drop Table in SQL
CREATE TABLE statement is used to create a table in a database. Database tables are organized into rows and columns. Each table must have a name and can have any number of columns (minimum 1 column is required). Each column must have a data type which determines the type of values that can be stored. CREATE TABLE command will fail if a table is already existing in the database with same name. All tables must have a unique name.
DROP TABLE statement is used to remove an existing table from the database.
[image: CREATE TABLE SYNTAX]
Create table Example :
We will now look at some common errors that occur while creating tables. The statement below has several syntax errors. Let us resolve these errors step by step:
1 CREATE TABLE Student (
2 StudentId INTEGER
3 Gender CHAR(1),
4 FName VARCHAR2,
5 DOJ,);
Constraints of SQL:
We have learnt that data integrity in database systems is enforced through constraints. These constraints are typically specified along with the CREATE TABLE statement. Constraints are classified into multiple types based on the number of columns they act upon as well as on the way they are specified.
	Constraint Type
	Applies On

	Single Column Constraint
	Single Column

	Composite Constraint
	Multiple columns

	Constraint Type
	Specified

	Column Level Constraint
	With Column definition

	Table Level Constraint
	After Column definition

Table level constraint can be specified after all columns used in the constraint have been defined. It is not necessary to specify them after all columns in the table are defined. Composite constraints can only be specified as table level constraints.
Various constraints that can be created on database tables are:
· NOT NULL
· PRIMARY KEY
· CHECK
· UNIQUE
· FOREIGN KEY
We can also specify DEFAULT value for a column. Oracle database does not consider DEFAULT as a constraint.
Not Null Constraint :
NOT NULL Constraint prevents a column from accepting NULL values. NOT NULL can only be applied as a column level constraint. Constraint name is optional and it can be specified by using CONSTRAINT keyword.
· Create
· Insert
Let us now create NOT NULL constraint on StudentId and FName columns.
CREATE TABLE Student (
 StudentId INTEGER CONSTRAINT Stud_SId_nn NOT NULL,
 FName VARCHAR2(10) NOT NULL,
 LName VARCHAR2(10));
Errors While Inserting in Not Null :
[image:]
Default Constraint :
A column can be given the default value by using DEFAULT option. The data type of column and default expression must be the same. DEFAULT option can be provided for nullable as well as NOT NULL attributes. Oracle database does not consider DEFAULT as a constraint.
· Create
· Insert
Let us create Student table with current date as default for date of joining.
CREATE TABLE Student (
 StudentId INTEGER,
 FName VARCHAR2(10),
 DOJ DATE DEFAULT SYSDATE);
Different Examples :
[image:]

Primary Key Constraint :
PRIMARY KEY constraint on a column ensures that the column cannot contain NULL and duplicate values. We can have only one PRIMARY KEY in a table.
· Create
· Insert
We will now create a Student table with primary key constraint on StudentId column.
CREATE TABLE Student (
 StudentId INTEGER CONSTRAINT stud_sid_pk PRIMARY KEY,
 FName VARCHAR2(10),
 ContactNo NUMBER(10));

Example :
[image:]
Check Constraint Examples :
CHECK constraint is used to limit the values that can be specified for a column.
· Create
· Insert
Let us create a CHECK constraint on Gender column to only allow 'M' (Male) and 'F' (Female) values.
CREATE TABLE Student (
 StudentId INTEGER,
 FName VARCHAR2(10),
 Gender CHAR(1) CONSTRAINT Stud_gender_ck1 CHECK(Gender IN('M', 'F')));
Examples :
[image:]
Unique Constraint Examples :
UNIQUE constraint on a column ensures that two rows in a table cannnot have same value in that column. Unlike Primary Key, UNIQUE constraint allows NULL values. A table can have many UNIQUE constraints.
· Create
· Insert
Let us create Unique constraint on ContactNo so that two student cannot have the same contact details.
CREATE TABLE Student (
 StudentId INTEGER,
 FName VARCHAR2(10),
 ContactNo NUMBER(10) CONSTRAINT Stud_cno_uk UNIQUE);
Examples :
[image:]
Foreign Key :
Student Table has already been created and inserted with few records in the database.
	STUDENTID
	FNAME
	CONTACTNO

	1001
	John
	8754212356

	1002
	Jack
	7456878956

· Create
· Insert
Let us now create a table Marks which stores marks scored by each Student in each Course
CREATE TABLE Marks(
 CourseId INTEGER,
 StudentId INTEGER,
 MarksScored DECIMAL(5,2));

Run
Table created.
	NAME
	Null?
	TYPE

	COURSEID
	
	NUMBER

	STUDENTID
	
	NUMBER

	MARKSSCORED
	
	NUMBER(5,2)

Need for Composite Primary Key :
Student Table has already been created and inserted with few records in the database.
	STUDENTID
	FNAME
	CONTACTNO

	1001
	John
	8754212356

	1002
	Jack
	7456878956

· Create
· Insert
Let us now create a table Marks which stores MarksScored by each Student in each Course
CREATE TABLE Marks (
 CourseId INTEGER CONSTRAINT marks_cid_pk PRIMARY KEY,
 StudentId INTEGER CONSTRAINT marks_sid_fk REFERENCES Student(StudentId),
 MarksScored DECIMAL(5,2));

Different Errors OF Create Table :
Error 1 : Missing Right Paranthesys
[image:]
[image:]
[image:]
[image:]
Constraint Summary :
[image:]
Alter Table Statements :
How do we add a new column to a table that already exists. One option is to drop the table and create it again. What if the table has lot of data and we do not want to lose existing data? We cannot drop the table now. One option is to take a backup of data, then drop and recreate the table and finally load the data from backup into the modified table. This approach might work but if number of rows are large then this process will take lot of time. Is there an easier way to avoid all these troubles?
We need to use ALTER TABLE command through which the structure of existing table can be changed without any loss of data. ALTER table can also be used to rename a column, change data type of a column and add or remove constraints. Syntax for ALTER TABLE command is provided below:
[image: SQL Commands]
We will now understand the first four syntax of Alter Command. Adding and dropping constraints is out of scope for the current course.
Insert Statements :
Insert statement is used to add tuples (records) to table. It supports three alternate syntax as shown below:
[image: Insert Statement]
If column names are not used then values must be provided for all columns in the order of their specification during table creation. If Column names are used then the data provided in values clause must have same data type of column at same position. Multiple rows can be inserted through a single INSERT statement only when it is used with SELECT statement.

Select Statements :
SELECT query allows us to retrieve data from one or more tables in a relational database. It can be represented as:
[image: Select Query]
Let us understand some illustrative algorithms for fetching data from the database.
Query
SELECT *
FROM Employee
Illustrative Algorithm to fetch data
for each tuple t in Employee
 Add t to the result
SELECT *
FROM Employee
WHERE Salary > 40000;
for each tuple t in Employee
 if Salary > 40000
 Add t to the result
Errors Of Select Statement :

[image:]
Query Execution Order :
A SELECT statement can have many clauses so it is important to understand the order in which these are executed to provide the result. However, for ease of understanding we can refer to the execution order by FJWGHSDO.
[image: Order of Execution]
A quick way to remember this is to use the mnemonic "Frank John's Wicked Grave Haunts Several Dull Owls". In this section we will focus on FROM, WHERE, SELECT and DISTINCT keywords.
The first step is always the FROM clause as we need to identify the tables from which data has to be fetched.
SELECT must be always be executed after the WHERE clause, e.g. we can have a query
SELECT EName FROM Employee WHERE Id = 1.
Here the filtering needs to happen on a Id column which is not included in the SELECT clause. Unless SELECT executes after WHERE, this functionality cannot be supported.
DISTINCT removes duplicates based on all columns of the SELECT clause. These columns could be a subset of all columns of the table OR may even contain derived columns through use of expression. Thus DISTINCT is dependent on SELECT clause and it's execution must happen after SELECT clause.
Updating the data :
Update statement is used to modify existing records in a single table in a relational database. Update statement can be represented as:
[image: Image to be provided by shan]
The database system ensures that no constraints are violated during execution of an update statement. Any violation of constraints results in failure of the statement.

Foreign Key Violation :
[image:]
[image:]
[image:]
Delete Statement :

DELETE statement is used to delete records from a single table in a relational database. The database system ensures that no constraints are violated during execution of a delete statement. Any violation of constraints results in failure of the statement.
[image: https://lex.infosysapps.com/fastrack/generic/dbms/images/delete.png]
TRUNCATE statement can also be used to delete data from tables. TRUNCATE statement deletes all rows from the table as it does not support WHERE clause. TRUNCATE statement is a faster option compared to DELETE when you have to delete all rows from the table.
Error Codes :
Whenever you perform a database operation for e.g. insert, update etc. you get a status code from the server indicating whether the operation was successful or not and the reason for the failure if any. In addition a descriptive message is also provided. Let us quickly recap on some of the codes you have encountered so far.
	Status Code
	Message
	Cause

	ORA-00000
	Successful Completion
	The statement was executed successfully.

	ORA-00001
	Unique constraint violation
	Trying to insert a duplicate value or Updating the key value column violating unique constraint.

	ORA-00904
	Invalid Identifier
	The sql statement might be executed on an invalid column or missing column.

	ORA-0913
	Too Many Values
	More values might be passed than expected. Usually happens in insert statement.

These status codes and messages are published in a reference document. You can refer the link below for Oracle database.
Difference Between Single Row and Multiple Row Functions :
Select both Batch and Section
SQL functions are built in modules provided by a database. You can use them in data manipulation statements to perform calculations on data.
All functions return a single value. They are categorized into two types based on number of rows they operate upon.
	
	Single Row Function
	Multi Row Function

	Returns
	Single Row
	Single Row

	Operates On
	Single Row
	Multiple Rows

	Used in Clauses
	SELECT, WHERE, ORDER BY and HAVING
	SELECT, ORDER BY and HAVING clauses

[image: https://lex.infosysapps.com/fastrack/generic/dbms/images/function-types.png]
Numeric Functions :
Numeric functions are single row functions that accept a numeric value and return numeric output.
	Name
	Syntax
	Function

	ABS
	ABS(value)
	Returns absolute value of a number

	ROUND
	ROUND(value, digits)
	Rounds the value to specified decimal digits

	CEIL
	CEIL(value)
	Rounds up the fractional value to next integer

	FLOOR
	FLOOR(value)
	Rounds down the fractional value to the lower integer

Make a Selection
· Ceil, Floor and Abs
· Round

Character Functions :
Character functions work on character strings and can return a character string or a numeric value.
	Name
	Syntax
	Function

	UPPER
	UPPER(value)
	Converts value to upper case

	LOWER
	LOWER(value)
	Converts value in lower case

	CONCAT
	CONCAT(value1, value2)
	Concatenates value1 and value2

	LENGTH
	LENGTH(value)
	Returns the number of characters in value.

Length, Upper and Lower
· Length, Upper and Lower
· Concatenating String data

Substring Function :
Substring function is used to extract part of a string. It has the following syntax SUBSTR(value, start_position, length)
[image: Image to be provided by shan]
Substring 1
· Substring 1
· Substring 2

Conversion Functions :

Use conversion functions to convert data from one format to another.
	Name
	Syntax
	Function

	TO_CHAR
	TO_CHAR(value, format)
	Converts a number or a date to a string. Use this function for formatting dates and numbers.

	TO_DATE
	TO_DATE (value, format)
	Converts a string to a date.

	TO_NUMBER
	TO_NUMBER (value, format)
	Converts a string to a number.

SELECT '01-Jan-2014' DATE_STRING, TO_DATE('01-Jan-2014') CONV_NOFORMAT, TO_DATE('01-Jan-2014', 'DD-Mon-YYYY') CONV_FORMAT FROM DUAL;
Date Functions :
Database provides functions to determine the current time and to perform date operations like adding a specific duration to a date, finding time difference between two dates etc.
	Name
	Syntax
	Function

	SYSDATE
	SYSDATE
	Returns current date of System i.e. the host on which database server is installed.

	SYSTIMESTAMP
	SYSTIMESTAMP
	Returns current timestamp of the System.

	ADD_MONTHS
	ADD_MONTHS(date, n)
	Adds n months to the given date.

	MONTHS_BETWEEN
	MONTHS_BETWEEN(date1,date2)
	Finds difference between two dates in months.

Aggregate Functions :
Aggregate functions operate on multiple rows to return a single row. Some aggregate functions like SUM (total), AVG (average) operates only on numeric columns while others like MIN (lowest value), MAX (highest value) and COUNT (number of rows) operate on all data types. All aggregate functions ignore NULL values except COUNT(*).
Employee Table
	ID
	ENAME
	SALARY
	BONUS
	DEPT

	1
	James Potter
	75000
	1000
	ICP

	2
	Ethan McCarty
	90000
	1200
	ETA

	3
	Emily Rayner
	25000
	100
	ETA

	4
	Jack Abraham
	30000
	NULL
	ETA

	5
	Ayaz Mohammad
	40000
	NULL
	ICP

· [image:] Min, Max and Sum
· Count
· Count with Distinct
· Avg

Other Functions :
	Name
	Syntax
	Function

	NVL
	NVL(value1, value2)
	Substitutes value1 by value2 if value1 is NULL. The data type of value1 and value2 must be same.

	USER
	USER
	Returns the current logged in user

Case Statement :
CASE statement can be used in SELECT clause to conditionally assign values to a computed attribute. It can also be used with WHERE, GROUP BY etc. CASE statement has two different syntax styles: Simple CASE expression and Searched CASE expression. Both of them are similar to if else statement in Python.
(1) Simple CASE expression :
[image: Image by Shan]
We can use the first syntax form when all conditions check for equality against a single column.

Order By Clause :
Order By clause is used to sort the result of a query in a particular order. Before we understand the syntax of ORDER BY, let us understand the sorting process on tabular data. We all know that data in a single column can be sorted in ascending or descending order.
We can also sort data by multiple columns. In such a case data is sorted on primary (first) column first. Sorting on secondary column happens only when multiple rows have the same value in the primary column. The sort order can be different for the two columns i.e. primary can be sorted in ascending and secondary in descending and vice-versa. This two column sorting mechanism can be extended to any number of columns.
[image: Image to be created: Shan]
Order By Syntax :
ORDER BY must be used to specify the columns on which data has to be sorted and the sort order i.e. ascending or descending. Rows are sorted in ascending order if sort order is not specified. DESC should be used to sort the rows in descending order. ORDER BY clause must be the last clause and can be used only in SELECT statement. The sort order only applies to the query result i.e. the underlying data in the table is not sorted.
[image: Image to be created: Shan]
An important point to note is that sorting of rows in the result is guranteed only on columns specified in the ORDER BY clause. If multiple rows have same value for columns in ORDER BY clause then they can appear in any order.
Example 1 :
[image:]
Example 2 :
[image:]
Example 3 :
[image:]
Sorting Techniques :
[image:]
Group By Clause:
Earlier we have seen aggregate functions being used to calculate min, max, avg etc. for all records of the query. What if the requirement is to calculate subtotals at Department level? In that case we will have to run the query once for every department. Is there a better way to achieve this functionality?
We can use GROUP BY to achieve such results using a single query. GROUP BY groups the data from the table into different groups based on criteria provided and calculates the aggregate function for each group. Thus the result has 1 row for each group.
[image: https://lex.infosysapps.com/fastrack/generic/dbms/images/group-by.png]
Example of Group By Clause :
Let us try to write a query to display the department and the total salary paid in each department.
SELECT Dept, SUM(Salary) FROM Employee GROUP BY Dept;
Employee Table
	ID
	ENAME
	SALARY
	DEPT
	DESIGNATION

	1
	James Potter
	75000.00
	ICP
	PM

	2
	Ethan McCarty
	90000.00
	ETA
	PM

	3
	Abhinav Mittal
	35000.00
	IVS
	SSE

	4
	Jack Abraham
	30000.00
	ETA
	SSE

	5
	Ayaz Mohammad
	40000.00
	ICP
	TA

	6
	Alice Jackson
	50000.00
	ICP
	TA

	ID
	ENAME
	SALARY
	DEPT
	DESIGNATION

	2
	Ethan McCarty
	90000.00
	ETA
	PM

	4
	Jack Abraham
	30000.00
	ETA
	SSE

	1
	James Potter
	75000.00
	ICP
	PM

	5
	Ayaz Mohammad
	40000.00
	ICP
	TA

	6
	Alice Jackson
	50000.00
	ICP
	TA

	3
	Abhinav Mittal
	35000.00
	IVS
	SSE

Aggregation
	SUM(Salary)

	120000.00

	SUM(Salary)

	165000.00

	SUM(Salary)

	35000.00

Illustrative Algorithm
Sort on Grouped Columns
For each distinct Grouped Columns
 Calculate aggregate function
 Add row to result
Prev
Step 11 of 11
Next
Result
	DEPT
	SUM(Salary)

	ETA
	120000.00

	ICP
	165000.00

	IVS
	35000.00

Having Clause :
We have now seen how to use GROUP BY in conjunction with aggregate functions to get summary of data category wise. What if we want to filter this summary? For e.g. if we want to fetch only those departments whose average salary of their employees is greater than a specific value.
This can be achieved using HAVING clause. Having allows aggregate functions to be used as filter criteria which cannot be done using WHERE clause.

Having Clause Example :
Let us write a query to display the department and the total salary for those departments whose total salary is more than 90000.
SELECT DEPT, SUM(Salary) FROM Employee GROUP BY DEPT HAVING SUM(Salary) > 90000;
Employee Table
	ID
	ENAME
	SALARY
	DEPT
	DESIGNATION

	1
	James Potter
	75000.00
	ICP
	PM

	2
	Ethan McCarty
	90000.00
	ETA
	PM

	3
	Abhinav Mittal
	35000.00
	IVS
	SSE

	4
	Jack Abraham
	30000.00
	ETA
	SSE

	5
	Ayaz Mohammad
	40000.00
	ICP
	TA

	6
	Alice Jackson
	50000.00
	ICP
	TA

	ID
	ENAME
	SALARY
	DEPT
	DESIGNATION

	2
	Ethan McCarty
	90000.00
	ETA
	PM

	4
	Jack Abraham
	30000.00
	ETA
	SSE

	1
	James Potter
	75000.00
	ICP
	PM

	5
	Ayaz Mohammad
	40000.00
	ICP
	TA

	6
	Alice Jackson
	50000.00
	ICP
	TA

	3
	Abhinav Mittal
	35000.00
	IVS
	SSE

Aggregation
	SUM(Salary)

	120000.00

	SUM(Salary)

	165000.00

	SUM(Salary)

	35000.00

Illustrative Algorithm
Sort on Grouped Columns
For each distinct Grouped Columns
 Calculate aggregate function
 If aggregate value meets having condition
 Add row to result
Prev
Step 13 of 13
Next
Result
	DEPT
	SUM(Salary)

	ETA
	120000.00

	ICP
	165000.00

Order Of Query Execution :
We have now learnt some additional clauses in SQL statements like ORDER By, GROUP BY, HAVING etc. Let us look what would be the execution order for these clauses.
[image: Order of Execution]
GROUP BY must always be after the WHERE clause otherwise aggregate functions will be calculated wrongly.
Having must always be after Group by as it filters records based on aggregate functions calculated during GROUP BY evaluation
SELECT clause must be evaluated after Group By and Having because displaying attributes not used in GROUP BY are not allowed in SELECT clause. It can only filter columns from the grouped resultset
ORDER BY must always be the last step in query execution as it depends on input from other clauses

Group By Errors :
[image:]
[image:]
[image:]
[image:]
Union and Union ALL :
Use UNION and UNION ALL clause to combine results from two or more SELECT statements. The select statements may be from same or different tables.They must have same number of columns and their data types at same position in both the query must be compatible (either same or convertible through automatic conversion).
[image: Image to be provided by Shan]
UNION removes all duplicates from the result. Two records are considered duplicates if values at corresponding positions of all their columns match.

Introduction to Joins :
How do we fetch data from multiple tables in a single query? Let us say we want to display employee id, employee name along with computer id, model of the computer allocated to the employee in a single tabular format. The input tables and sample output is provided below:
Employee Table
	ID
	ENAME
	COMPID

	1
	James Potter
	1001

	2
	Ethan McCarty
	NULL

Computer Table
	COMPID
	MODEL

	1001
	Vostro

	1002
	Precision

Result Table
	ID
	ENAME
	COMPID
	MODEL

	1
	James Potter
	1001
	Vostro

We can meet such requirements by using JOINS which can combine data from multiple tables. JOINs are of multiple types:
[image: https://lex.infosysapps.com/fastrack/generic/dbms/images/join-types.png]
In addition we also have Cross Join also called Cartesian product which is of academic interest only and is rarely used.

Cross Join :
CROSS Join is also referred to as Cartesian Product. A CROSS join with m rows in table A and n rows in table B will always produce m * n rows. Essentially it combines each row from the first table with each row of the second table. A cross join is rarely used as it mostly produces lot of meaningless data. However it is useful to understand the concept of other joins. Let us understand this join using Employee and Computer tables.
SELECT E.ID, E.ENAME, E.COMPID AS E_COMPID, C.COMPID, C.Model
FROM Employee E CROSS JOIN Computer C;
Inner Join :
INNER Join is the most frequently used JOIN. It matches the records from both tables based on the join predicate and returns only the matched rows. For ease of understanding one can think that first a Cartesian Product is created and then all the rows that do not meet the join condition are dropped from the result. Inner join also has a short hand syntax given its wide use. Let us understand this join using tables in Employee database:
SELECT ID, ENAME, E.COMPID AS E_COMPID, C.COMPID AS C_COMPID, MODEL
FROM Employee E INNER JOIN Computer C ON E.COMPID = C.COMPID;
While using Inner Joins there can be situation where you want to filter rows based on some criteria e.g. a need to fetch all employees from ETA who are allocated a computer. The filter condition can be supplied in two ways when using ANSI syntax (t1 INNER JOIN t2 ON condition).
Option 1: Using a WHERE clause
SELECT Id, EName, E.CompId AS E_CompId, C. CompId AS C_CompId, Model
FROM Employee E INNER JOIN Computer C ON E.CompId = C.CompId WHERE Dept='ETA'
The query is evaluated using a two step process:
Step 1. Two tables are joined using join condition and resultset is evaluated
Step 2. Filter condition in WHERE clause is applied on all the rows of the resultset to give the final result

Option 2: Combining with the join condition using AND operator
SELECT Id, EName, E.CompId AS E_CompId, C.CompId AS C_CompId, Model
FROM Employee E INNER JOIN Computer C ON E.CompId = C.CompId AND Dept = 'ETA'
Here the query is evaluated in a single step as the filter condition is applied right at the time of join condition evaluation.
Left Outer Join :
LEFT OUTER Join for tables A and B will always return all records from table A even if matching record is not found in table B as per the join condition. For records where match is found the result set is exactly same as the inner join result. However for non matching records all columns from table B appear as NULL in the result. Let us understand this join using Employee and Computer tables:
SELECT ID, ENAME, E.COMPID AS E_COMPID, C.COMPID AS C_COMPID, MODEL
FROM Employee E LEFT OUTER JOIN Computer C ON E.COMPID = C.COMPID;
Left Outer Join is used to fetch all rows from a main table and some additional information from a lookup table using join condition. Unlike INNER JOINs additional conditions have to be supplied carefully depending upon the business requirement.
If the objective is to filter all records from the resultset then the filter condition must be supplied through the WHERE clause, e.g. a need to show employee details and model of their allocated computer for all employees who belong to 'ETA'.
SELECT Id, EName, E.CompId AS E_CompId, C.CompId AS C_CompId, Model
FROM Employee E LEFT OUTER JOIN Computer C ON E.CompId = C.CompId WHERE Dept = 'ETA'
However care must be taken that this filter condition is using an attribute from the main table. Any attempt to filter (except check for NULL) using attribute from lookup table will result in wrong output as all NULL rows will get filtered and the purpose of using OUTER join will get defeated.
If we want to conditionally fetch values from the lookup table then the additional criteria must be combined with the join condition using AND operator, e.g. a need to show details of all employees and in addition model of allocated computer for only those employees who are allocated a computer manufactured in '2014'.
SELECT Id, EName, E.CompId AS E_CompId, C.CompId AS C_CompId, Model
FROM Employee E LEFT OUTER JOIN Computer C ON E.CompId = C.CompId AND MYear = '2014'
Right Outer Join :
RIGHT OUTER Join for tables A and B will always return all records from table B even if matching record is not found in table A as per the join condition. Right outer join is the mirror image of left join. In fact it is rarely used because the same resultset can be obtained by using a left join and reversing the order of the tables in the query. Let us understand this join using tables in Employee database:
SELECT ID, ENAME, E.COMPID AS E_COMPID, C.COMPID AS C_COMPID, MODEL
FROM Employee E RIGHT OUTER JOIN Computer C ON E.COMPID = C.COMPID;
Full Outer Join :

FULL OUTER Join combines the effect of both LEFT OUTER JOIN and the RIGHT OUTER JOIN. Full Outer Join between table A and table B returns matched as well as unmatched rows from both tables. For two tables with p and q rows, a 1:1 relationship and m matched rows the total number of rows in the resultset is m + (p - m) + (q - m) = p + q - m. Let us understand this join using tables in Employee database:
SELECT ID, ENAME, E.COMPID AS E_COMPID, C.COMPID AS C_COMPID, MODEL
FROM Employee E FULL OUTER JOIN Computer C ON E.COMPID = C.COMPID;
Different Syntax of Join :
[image:]
[image:]
Self Join :
SELF Join represents join of a table with itself. In this example we use inner self join to retrive employee's manager name. The Cartesian product of Employee table with itself will contain 5 x 5 = 25 rows. However only three rows have manager matching id and these appears on the result.
Example :
SELECT EMP.ID EMPID, EMP.ENAME EMPNAME, MGR.ID MGRID, MGR.ENAME MGRNAME
FROM Employee EMP INNER JOIN Employee MGR ON EMP.MANAGER = MGR.ID;

Subqueries :
Subquery is a query within a query. A subquery must be enclosed in brackets and can be used in SELECT, FROM, WHERE and HAVING clauses.
[image: image from shan]
Subquery in SELECT and FROM clause are rarely used. Subqueries in WHERE and HAVING clauses are classified into Independent and Correlated subqueries.
Select Clause Subqueries :
[image:]
From Clause Subqueries :
[image:]
Independent Subqueries :
In an independent subquery, the inner and outer query are independent of each other. You can run an inner query and inspect its result independent of the outer query. Independent subquery are further classified into single row and multiple row types depending upon the number of rows returned.
[image: image from shan]
Example 1 :
[image:]
Example 2 :
[image:]
Example 3 :
[image:]
Example 4 :
[image:]
Example 5:
[image:]
Correlated Subqueries :
A Correlated subquery is one in which the inner query that depends upon the outer query for it's execution. Specifically it uses a column from one of the tables in the outer query. The inner query is executed iteratively for each selected row of the outer query. In case of independent subquery, the inner query just executes once.
[image: image from Shan]
Example 1 :
[image:]
Example 2 :
[image:]
Example 3 :
[image:]
Example 4 :
[image:]
Example 5 :
[image:]
Database State and Operations
So far we have learnt various database operations like CREATE, DROP, UPDATE, DELETE etc. These operations alter the state of a database and move it forward in time. There are other operations like SELECT, DESCRIBE which does not alter the state at all.
[image: db-states]
Each of these operations are atomic by default i.e. they are applied in all or none manner. For e.g. a table cannot be created partially with less columns, an insert statement cannot insert a partial record etc.

Need For Transactions :
There are many situations when we need multiple database operations to be performed in atomic manner. The simplest example is money transfer from one account to another. It is evident that any credit without a debit or vice versa would be unacceptable. This business transaction has to be done using two operations; an update to increase the balance to the receiving account and another update to decrease the balance from the sending account.
[image: Image to be created: Shan]
A database operation can fail due to several reasons like connectivity failures, integrity constraints violation etc. What would happen if the first update succeeds and the second one fails? It leaves the database in an inconsistent state from business perspective.
Introduction to Transactions :
Transaction is a logical unit of work containing one or more operations on a database. A transaction provides two important functions:
· Ensures that all operations within a transaction happens in an atomic manner
· Provides capability to undo the partial processing in the event of failure at any step
Database provides three statements for transactions
	Statement
	Description

	Set transaction
	Initiates the transaction

	Commit
	Successfully completes the transaction. Actions of a transaction cannot be rolled back after commit has been executed.

	Rollback
	Ends the transaction after undoing all the work performed after begin transaction statement.

[image: transaction]

Autocommit Transaction :
All operations that alter the state of database always happen in a transaction. So till now all the database operations you have performed was actually being run in a transaction. But how is it possible? We have never used set transaction, commit and rollback commands so far.
Well, database servers automatically start a transaction whenever they encounter the first executable SQL statement. An easy way to understand is to imagine that all SQL statements were surrounded by set transaction and commit statements.
SET TRANSACTION;
UPDATE Acct SET Balance = Balance – 100 WHERE AcctNo = 100;
COMMIT;
The AUTOCOMMIT property of a connection controls automatic issue of commit after the operation. AUTOCOMMIT can have ON or OFF values and it depends on the default setting of the client you are using to connect to the database.
	Command
	Description

	SET AUTOCOMMIT ON
	Changes the mode of connection to ON. In this mode COMMIT command is automatically issued after every SQL statement that alters the state of a database.

	SET AUTOCOMMIT OFF
	Changes the mode of connection to OFF. In this mode user is expected to provide an explicit COMMIT or ROLLBACK command to complete the transaction.

	SHOW AUTOCOMMIT
	Display the current state of AUTOCOMMIT property.

[image: Image to be created: Shan]
ACID Properties :
All transactions exhibit ACID properties
	Property
	Description

	Atomicity
	All operations within the transaction must all succeed or fail.

	Consistency
	A transaction always moves the database from one consistent state to another. Hence all integrity and data constraints must be satisfied.

	Isolation
	Transactions execute in isolation of each other. In other words partial execution of one transaction is not visible to other transactions. Only committed data is visible to other transactions.

	Durability
	Once a transaction is committed, it is permanently saved, the data is preserved even in the case of power failure, hardware failure etc.

Modular Query Writing :
SQL queries can get quite complex. It is often easier to write them in a modular way. We'll learn how to do that for a business scenario.
We'll do this in two steps.
Step 1 - Design: We determine the SQL concepts that are relevant to the given problem.
Step 2 - Coding: We write and test the query in incremental steps.

Next we'll use a questionnaire to determine the SQL concepts that are relevant to the given problem.
· You do not need to memorize this questionnaire. It will be available to you during your exams also.
· There are many ways to meet a business requirement. This questionnaire shows you only one possible way to think through SQL concepts. It is not a complete set of rules, and it will not help you solve all possible situations. If you run into any issues, contact your educator.
· The questionnaire focuses on advanced concepts like INNER JOIN, OUTER JOIN, GROUP BY, HAVING, independent subquery and correlated subquery. To keep things simple, we have omitted concepts like functions (NVL, LOWER etc.), ORDER BY, UNION and logical operators (BETWEEN, LIKE, etc.), but if you need them, please feel free to use them.
· The questionnaire assumes a two table scenario. When you need more tables, use relevant questions repeatedly as required. For e.g you need to ask JOIN questions repeatedly for each pair of tables to be joined

We will now demonstrate modular query writing by solving some questions.
Business Scenario
Toys corner’ is a famous toy shop that sells varieties of toys under different categories and for different age limits. To make the business more reachable, they maintain a database and an application. The table structures and sample data of the database are as given below.
The Customers table provides the details of all the customers who visit the shop to make purchase.
	Column Name
	Data Type
	Constraints
	Description

	CustId
	NUMBER
	PRIMARY KEY
	Id of the customer

	CustName
	VARCHAR2(10)
	NOT NULL
	Name of the customer

	CustType
	CHAR(1)
	
	Type of customer

The Category table provides the details of different categories of toys available in the shop.
	Column Name
	Data Type
	Constraints
	Description

	CId
	CHAR(4)
	PRIMARY KEY
	Id of the category. Should start with 'C'

	CName
	VARCHAR2(5)
	
	Name of the category

The Toys table provides the details of toys that are available under different categories.
	Column Name
	Data Type
	Constraints
	Description

	ToyId
	CHAR(5)
	PRIMARY KEY, CHECK
	Id of the toy. Should start with 'T'

	ToyName
	VARCHAR2(50)
	UNIQUE, NOT NULL
	Name of the toy

	CId
	CHAR(4)
	FOREIGN KEY, NOT NULL
	Refers to the cId in category table

	Price
	NUMBER
	NOT NULL, CHECK
	Cost of the toy. Toy cost must be greater than 0

	Stock
	NUMBER
	NOT NULL
	Number of toys available

The Transactions table provides the transactions made by the customer.
	Column Name
	Data Type
	Constraints
	Description

	TxnId
	NUMBER
	PRIMARY KEY
	Id of the transaction

	CustId
	NUMBER
	FOREIGN KEY
	Refers to the custId in customer table

	ToyId
	CHAR(5)
	FOREIGN KEY
	Refers to the toyId in toy table

	Quantity
	NUMBER
	
	Number of toys purchased

	TxnCost
	NUMBER
	
	Cost of the transaction

Download table creation script for Modular Query Writing

Examples :
DROP TABLE Transactions CASCADE CONSTRAINTS PURGE;
DROP TABLE toys CASCADE CONSTRAINTS PURGE;
DROP TABLE Category CASCADE CONSTRAINTS PURGE;
DROP TABLE Customers CASCADE CONSTRAINTS PURGE;

CREATE TABLE customers(
CustId NUMBER PRIMARY KEY,
CustName VARCHAR2(10) NOT NULL,
CustType CHAR(1)
);

CREATE TABLE Category(
CId CHAR(4) PRIMARY KEY CHECK (CId Like 'C%'),
CName VARCHAR2(15)
);

CREATE TABLE toys(
ToyId CHAR(5) PRIMARY KEY CHECK (ToyId Like 'T%'),
ToyName VARCHAR2(50) UNIQUE NOT NULL,
CId CHAR(4) NOT NULL REFERENCES Category(CId),
Price NUMBER NOT NULL CHECK (Price > 0),
Stock NUMBER NOT NULL);

CREATE TABLE Transactions
(
TxnId NUMBER PRIMARY KEY,
CustId NUMBER REFERENCES Customers(CustId),
ToyId CHAR(5) REFERENCES Toys(ToyId),
Quantity NUMBER ,
TxnCost NUMBER);

COMMIT;

Toys table
	ToyId
	ToyName
	CId
	Price
	Stock

	T1001
	GT Racing Car
	C101
	500
	40

	T1002
	Hummer Monster Car
	C101
	600
	20

	T1003
	ThunderBot Car
	C101
	700
	15

	T1004
	Ken Beat
	C102
	150
	20

	T1005
	Drummer
	C102
	200
	10

	T1006
	Kelly
	C103
	150
	13

	T1007
	Barbie
	C103
	550
	40

Category table
	CId
	CName

	C101
	Vehicles

	C102
	Musical

	C103
	Dolls

	C104
	Craft

Transactions table
	TxnID
	CustId
	ToyId
	Quantity
	TxnCost

	1000
	103
	T1006
	5
	2750

	1001
	104
	T1002
	2
	1200

	1002
	103
	T1005
	3
	600

	1003
	101
	T1001
	1
	500

	1004
	101
	T1004
	3
	450

	1005
	103
	T1003
	3
	2100

	1006
	104
	T1003
	4
	2400

Customers table
	CustId
	CustName
	CustType

	101
	Tom
	R

	102
	Harry
	

	103
	Dick
	P

	104
	JoY
	P

Example :
DELETE FROM Transactions;
DELETE FROM toys;
DELETE FROM Category;
DELETE FROM Customers;

INSERT INTO Customers VALUES (101,'Tom','R');
INSERT INTO Customers VALUES (102,'Harry',NULL);
INSERT INTO Customers VALUES (103,'Dick','P');
INSERT INTO Customers VALUES (104,'JoY','P');

INSERT INTO Category VALUES ('C101','Vehicles');
INSERT INTO Category VALUES ('C102','Musical');
INSERT INTO Category VALUES ('C103','Dolls');
INSERT INTO Category VALUES ('C104','Craft');

INSERT INTO Toys VALUES ('T1001','GT Racing Car','C101',500,40);
INSERT INTO Toys VALUES ('T1002','Hummer Monster Car','C101',600,20);
INSERT INTO Toys VALUES ('T1003','ThunderBot Car','C101',700,15);
INSERT INTO Toys VALUES ('T1004','Ken Beat','C102',150,20);
INSERT INTO Toys VALUES ('T1005','Drummer','C102',200,10);					
INSERT INTO Toys VALUES ('T1006','Kelly','C103',150,13);
INSERT INTO Toys VALUES ('T1007','Barbie','C103',550,40);					

INSERT INTO Transactions VALUES (1000,103,'T1006',5,2750);
INSERT INTO Transactions VALUES (1001,104,'T1002',2,1200);
INSERT INTO Transactions VALUES (1002,103,'T1005',3,600);
INSERT INTO Transactions VALUES (1003,101,'T1001',1,500);
INSERT INTO Transactions VALUES (1004,101,'T1004',3,450);
INSERT INTO Transactions VALUES (1005,103,'T1003',3,2100);
INSERT INTO Transactions VALUES (1006,104,'T1003',4,2400);

COMMIT;

Example 1 :
[image:]
Example 2 :
[image:]
[bookmark: _GoBack]
image4.png
ENaE SALARY BONUS DEPT
1 [damesoter | 75000 | 1000 | icp
2 | Emanmccaty oo | 2000 | ETA
3 | EmiyRayner | 25000 En
4 | sackpbranam | 3000 | 1000 | ETA

Relation is usually represented as:
Employee(ID, ENAME, SALARY, BONUS, DEPT)

image66.png
DEMS Home

porta Home.
1 ames potter
2 than mecary
3 Emiy Rayner
4 Jackabraham

Ayaz Mohammad

Single Column Default -

o19uN-14

o1-FEs-14

o1aN-14

o1uL1s

o1-aPR-14

Data s sorted in Ascending Order if the sort order is not specified

1000

1200

100

nuLL

oL

nd the concepts in select clause using some examples. We will be using the Employee table as described below

DESIGNATION

se

sse

i

‘mm . ENANE, D03, SALARY, DEPT, DESIGNATION FROM Enployee ORDER BY SALARY

Emily Raynar
Jack Abraham
Ayaz Mohammad
James pottar

Ethan MeCarty

013AN-14.

010L-14

01-APR-14

01un-14

o1-FER-14

30000

40000

75000

50000

1cp

=3

sse

image67.png
Let us understand the concepts in select clause using some examples. We will be using the Employee table 35 described below:

™ ENAME
1 James potter

2 ethan meCarty

3 Emiy Rayner

4 Jack Abraham

5 AyezMohammad

Maltple Columas -

ooy
o19uN-14
o1-FEs-14
o1aN-14
o1uL1s

o1-aPR-14

BoNUS.
1000
1200
100
nuLL
oL

DEPT DESIGNATION
1ce o

A o

A se

A sse

1ce i

brovide comma separated any number of columns in Order by claus to sort an multple columns

‘mm I, ENANE, 003, SALARY, DEPT, DESIGVATION FROW Enployes ORDER BY DEPT, DESIGNATION

Ethan McCarty
3 Emiy Rayner

4 ackAbraham
1 ames pottar
5 AyazMohammad

o1-FEB-14
010aN-14.
010114

01un-14

01-APR-14

25000

30000

75000

40000

=3

1cp

se

sse

2y

image68.png
Let us undarstand the concepts in select clauss using some examples. W will be using the Employes table as described below:

D EnaME
1 James potter
2 than mecary
3 Emiy Rayner
4 Jackabraham

5 AyazMohammad

positionsl Sort -

ooy
o19uN-14
o1-FEs-14
o1aN-14
o1uL1s

o1-aPR-14

1000
1200
100

nuLL
oL

DEPT DESIGNATION
1ce o

A o

A se

A sse

1ce i

Column position in the query can be used as an alternative to column name in ORDER BY clause

‘mm . ENANE, 003, SALARY, DEPT, DESIGNATION FROM Enployee ORDER &Y 2

Ayaz Mohammad

3 Emiy Rayner
2 Ethan mecany
& ack abrabam
1 ames potr

01-APR-14
010aN-14.
o1-FER-14
010L-14

013un-14

25000

50000

30000

75000

se

sse

image69.png
[k s sicton |

Single Column Defaule 1 <9l

| st s 52
[Ep——
e Coas |
ot Sors Ot
s st
o n ST s
L
L Com 5
o Comn ¢

image70.png
SELECT Dept, SuM(Salary)
FROM Employee
GROUP BY Dept;

DEPT SALARY

ETA 25000

ETA 90000 DEPT SUM(SALARY)

ETA 30000

image71.png
F W G H S D 0]

FROM WHERE GROUP BY HAVING SELECT DISTINCT ORDER BY

image72.png
We will now look at some common errors while using GROUP BY.

™ EnamME
1 ames potter

2 Ethan MeCarty

3 Emiy Rayner

4 Jack Abraham

5 AyazMohammad

Aggregate Function Error 1=

Aggregate functions cannot be used in WHERE clause.

o3
01-3un-14
o1-FEB-14
013aN-14
01uL-14

01-APR-14

SALARY

75000

50000

25000

30000

40000

1000

1200

100

oL

oL

EPT

1c

DESIGNATION

o™

o

se

sse

2y

SELECT 14, ENane, Salary, Dept FROM Emplojee EL WHERE Salary = MAX(Salary)

ORA-00934: group function

not allowed here

image73.png
We will now lock at some common errors while using GROUP BY.

D EnaME o3 SALARY BoNUS DEPT DESIGNATION
1 ames potter 01-3un-14 75000 1000 1c o™

2 Ethanmccary o1-FEs-1 50000 1200 A o

3 Emiy Rayner o1-3aN-14 25000 100 A se

4 ackAbraham 01uL-14 30000 oL A sse

5 AyazMohammad o1-APR-14 40000 oL 1ce 2y

Aggregate Function Error 2 =

Aggregate functions cannot be used in WHERE clause even if GROUP BY is used.

SELECT DEPT, SUN(Salary) FROM Eployee WHERE SM(Salary) > 90000 GROLP BY DEPT

ORA-00034: group function is not allowed here

image74.png
We will now ok at some common errors while using GROUP BY.

D EnaME o3

1 ames potter 01-3un-14
2 Ethanmccary o1-FEs-1
3 Emiy Rayner 013aN-14
4 ackAbraham 01uL-14
5 AyazMohammad 01-APR-14

Nested Agaregate Function -

SALARY

75000

50000

25000

30000

40000

1000

1200

100

oL

oL

Nested aggregate function cannot be used in SELECT clauss without GROUP BY clause.

EPT

1c

DESIGNATION
o™

o

se

sse

2y

SELECT MAX(AVG(Salary)) FROM Evployee

ORA-00073: nested group function without GROUP BY

image75.png
We will now ok at some common errors while using GROUP BY.

D EnaME o3 SALARY BoNUS DEPT DESIGNATION
1 ames potter 01-3un-14 75000 1000 1c o™

2 Ethanmccary o1-FEs-1 50000 1200 A o

3 Emiy Rayner o1-3aN-14 25000 100 A se

4 ackAbraham 01uL-14 30000 oL A sse

5 AyazMohammad o1-APR-14 40000 oL 1ce 2y

Incorract Order By -

Ordar By cannot be used on calumns on which Grouing is not being dne.

SELECT Dept, SWN(Salary) FROM Eployee GROLP BY Dept ORDER BY Designation

image5.png
Attributes / columns / fields

NN

[0 evawe saany sowus et |
1 [damesoter | 75000 | 1000 | icp
2 | Emanmccaty oo | 2000 | ETA
3 | EmiyRayner | 25000 En
4 | sackpbranam | 3000 | 1000 | ETA

Relation is usually represented as:
Employee(ID, ENAME, SALARY, BONUS, DEPT)

image76.png
SELECT * FROM Employee WHERE Designation = 'PM'

SELECT * FROM Employee UNION
WHERE Designation = 'PM' SELECT * FROM Employee WHERE Dept = 'ICP'
1 James Potter IcP PM i e ot} =P E
2 |Emanmccaty | ETA | PM 2 |Ermitkeny ||ER ||E

SELECT * FROM Employee

WHERE Dept = 'ICP' SELECT * FROM Employee WHERE Designation = 'PM'
DEPT DESIGNATION UNION ALL B .
SELECT * FROM Employee WHERE Dept = 'ICP
EnaE DEPT DESIGNATION

James Potter

icP PM
2 | Ethan McCary EA | PM

image77.png
Inner Join Self Join

Left Outer Join Right Outer Join Full Outer Join

image78.png
Employee Table

D EnamME DEPT comprn
1 ames potter 1c0 1001
2 thanmccary ea nuLL
3 Emily Rayner ED 1002
4 ack Abraham A nuLL
5 AyezMohammad 1 1003

Make 3 Selection -

Cross Join - ANST Sy
Cross Jein - Akerate Syneax
Inner Join - ANST Syntax

Inner Jin - Aternate Syneax

Lefe Outer Jin - ANST Syneax

Lefe Outer Join - Atemate Syneax
Right Outer Jin - ANSI Syneax
Right Outer Jon - Atemate Syntax

Full OuterJoin - ANST Syntax

Computer Table
coMPID MAKE
1001 oel
1002 oel
1003 Lenove
1004 Lenove

MoDEL
Vestro
Pracision
Edge

202
204
202

204

image79.png
Make 3 Selection

Mising Alas Name.
Mixing Syntax 1

Mixing Syntax 2

image80.png
Subquery in SELECT

Subquery in FROM

Subquery in WHERE

Subquery in HAVING

SELECT Id, EName, Salary,
(SELECT AVG(Salary) FROM Employee) AS AvgSal FROM Employee

SELECT * FROM (SELECT ID, EName, Salary FROM Employee) A

SELECT Id, EName, Salary FROM Employee A WHERE Salary
= (SELECT MAX(SALARY) FROM Employee B)

SELECT Dept FROM Employee GROUP BY Dept HAVING SUM(Salary)
= (SELECT MAX(SuM(Salary)) FROM Employee GROUP BY Dept)

image81.png
Let us understand the concepts of SELECT and FROM clause in Subguery. We will be using the Employes table as described belo

1 EnamE ooy SALARY BoNUS pePT
1 ames pottar o114 75000 1000 100

2 Ethan McCarty o-FEs-1e 50000 1200 ED

3 Emily Rayner o1an-14 25000 100 ED
. ack Abraham o1uL14 20000 NuLL ED

s Ayaz Mohammad o1-apR-14 40000 NuLL 100
SELECT Clause -

A subauery in SELECT clause can return a single value (single row and single column). Tt should be provided an alias name

[. o, sy, e s o rLoveD 25 v, e B [r]
James ot 75000 s200

: cvanvecan so000 s200

s iy 25000 s200

o caem s0000 s200

s Ayaz Mohammad 40000 52000

image82.png
Let us understand the concepts of SELECT and FROM clause in Subguery. We will be using the Employee table as described below:

1 EnamE ooy SALARY BoNUS pePT
1 ames pottar o114 75000 1000 100

2 Ethan McCarty o-FEs-1e 50000 1200 ED

3 Emily Rayner o1an-14 25000 100 ED
. ack Abraham o1uL14 20000 NuLL ED

s Ayaz Mohammad o1-apR-14 40000 NuLL 100
FROM Clause -

A subuery in FROM clauss is slzo called an Inline View and it should be slissed in the query

[y o Gz . e, Sy o i 4 =
5 e ==
. s o
: et e =
. it o

s Ayaz Mohammad 40000

image83.png
SELECT ID, EName, Salary FROM Employee A WHERE Salary
= (SELECT MAX(Salary) FROM Employee B)

Step 1: Inner query executes

Input: Employee table SELECT MAX(Salary) FROM Employee B
D ENAME SALARY D ENAME SALARY

1| danesrota | 700 | oo |
2 [Evanvccary | _soo00 2 [Evanvecary
s [Enyrame | o0 5 e e

Step 2: The result of inner query is substituted in outer query
SELECT ID, EName, Salary FROM Employee A WHERE Salary = 90000

Step 3: Outer query executes

D ENAME SALARY

BT

image84.png
Let us understand the concepts of Single row and Multi row Subquery. We will be using the Employee table and Computer table as.
described below:

D EnamME SALARY BONUS DEPT COMPID coMPID MAKE MODEL
1 ames pottar 75000 1000 0 1001 1001 oel Vostro

2 ethan Hecarty 50000 1200 Ao 1002 oel brecision
3 Emiy Rayner 25000 100 A 1002 1003 Lenovo Edge

4 ack Abraham 20000 nuLL A nuw 1004 Lenove Herizon
5 Ayaz Mohammad 40000 oL 0 1003

Single Row - Equality Operator -

Fetch datais of employees who are getting highest salary.

SELECT 14, ENane, Salary, Dept FROM Emplojee EL WHERE Salary = (SELECT NAX(Salary) FROM Enployes A
2 v

image85.png
Let us understand the concepts of Single row and Multi row Subquery. We will be using the Employee table and Computer table as
daseribed below:

D EnamME SALARY BONUS DEPT COMPID coMPID MAKE MODEL
1 ames pottar 75000 1000 0 1001 1001 oel Vostro

2 ethan Hecarty 50000 1200 Ao 1002 oel brecision
3 Emiy Rayner 25000 100 A 1002 1003 Lenovo Edge

4 ack Abraham 20000 nuLL A nuw 1004 Lenove Herizon
5 Ayaz Mohammad 40000 oL 0 1003

Single Row - Nested Function =

Display the department in which the maximum totsl salary is paid to the employaes.

LT 0T ol o RO Y GEPT PG ST < GELET WG e A
Satepes R £ oupty ¢

image6.png
Rows / records / tuples %

ENaE SALARY BONUS DEPT
1 [damesoter | 75000 | 1000 | icp
2 | Emanmccaty oo | 2000 | ETA
3 | EmiyRayner | 25000 En
4 | sackpbranam | 3000 | 1000 | ETA

Relation is usually represented as:
Employee(ID, ENAME, SALARY, BONUS, DEPT)

image86.png
Let us understand the concepts of Single row and Multi row Subquery. We will be using the Employee table and Computer table as
daseribed below:

D EnamME SALARY BONUS DEPT COMPID coMPID MAKE MODEL
1 ames pottar 75000 1000 0 1001 1001 oel Vostro

2 ethan Hecarty 50000 1200 Ao 1002 oel brecision
3 Emiy Rayner 25000 100 A 1002 1003 Lenovo Edge

4 ack Abraham 20000 nuLL A nuw 1004 Lenove Herizon
5 Ayaz Mohammad 40000 oL 0 1003

Multiple Ra - IN Opsratar -

Display the details of computer which are allocated to the employees.

SELECT Conpld, Make, Model FRON Computer WHERE CompTd TN (SELECT ConpId FROM Employee);

image87.png
Let us understand the concepts of Single row and Multi row Subquery. We will be using the Employee table and Computer table as
daseribed below:

D EnamME SALARY BONUS DEPT COMPID coMPID MAKE MODEL
1 ames pottar 75000 1000 0 1001 1001 oel Vostro

2 ethan Hecarty 50000 1200 Ao 1002 oel brecision
3 Emiy Rayner 25000 100 A 1002 1003 Lenovo Edge

4 ack Abraham 20000 nuLL A nuw 1004 Lenove Herizon
5 Ayaz Mohammad 40000 oL 0 1003

0N Equivalent -

Indspandant subguery can be replacad by join if it i used with I clauss to fetch forsign keys from another table. The JOIN solution for
query in example 3 (Multiple Row- In Operator)

SELECT C.CompTd, Make, Node] FROM Computer C, Employee E WHERE E.Conpld = C.CompTd;

image88.png
Let us understand the concepts of Single row and Multi row Subquery. We will be using the Employee table and Computer table as
daseribed below:

D EnamME SALARY BONUS DEPT COMPID coMPID MAKE MODEL
1 ames pottar 75000 1000 0 1001 1001 oel Vostro

2 ethan Hecarty 50000 1200 Ao 1002 oel brecision
3 Emiy Rayner 25000 100 A 1002 1003 Lenovo Edge

4 ack Abraham 20000 nuLL A nuw 1004 Lenove Herizon

5 Ayaz Mohammad 40000 oL 0 1003

‘Subquery Mandatory -

A Subquery must be used if value of aggregate function is required in where clause.

SELECT ENane,Dept FRON Enployes WHERE Salary>(SELECT AVG(Salary) FRON Enployee)

image89.png
The column of table present in outer query
(Employee E1) is used inside the inner
query (EL.Designation)

SELECT Id, Ename, Designation, Salary FROM Employee E1

WHERE Salary >= (SELECT Avg(Salary) FROM Employee E2 WHERE El.Designation = E2. Designation);

image90.png
Let us undrstand the cancapts of Corralsted Subquary. We vil be using the Employas table and Computer table a5 described belo

I ENAME SALARY DEPT MANAGER COMPID coMPID MAKE MODEL
1 James pottar 75000 0 o 1001 1001 oel Vostro

2 ethan MeCarty 50000 A nuw oL 1002 oel brecision
3 Emily Rayner 25000 e 2 1002 1003 Lenovo Edge

4 ackAbraham 20000 e 2 oL 1004 Lenove Herizon
5 Aysz Mohammad 40000 w1 1003

Single Row - Aggregate Function -

Display the details of all amployaes whose salary is greater than or equal to avarage salary of the employess in their own department.

e L T R - |
o et fuoeer + 21560,

image91.png
Let us understand the concepts of Correlated Subquery. We will be using the Employee table and Computer table as described below:

I ENAME SALARY DEPT MANAGER COMPID coMPID MAKE MODEL
1 James pottar 75000 0 o 1001 1001 oel Vostro

2 ethan MeCarty 50000 A nuw oL 1002 oel brecision
3 Emily Rayner 25000 e 2 1002 1003 Lenovo Edge

4 ackAbraham 20000 e 2 oL 1004 Lenove Herizon
5 Aysz Mohammad 40000 w1 1003

Single Row -

Display the detais of all amployass whoss salary is greater than their manager’s salary.

SELECT 14, ENane, DEPT, Salary FROM Employes E WHERE Salary > (SELECT Salary FROM Employee ~
WHERE E.Manager = M.10); v

image92.png
Let us understand the concepts of Correlated Subquary. We will be using the Employee table and Computer table 25 describad below:

I ENAME SALARY
1 James pottar 75000
2 ethan MeCarty 50000
3 Emily Rayner 25000
4 ackAbraham 20000
5 Aysz Mohammad 40000

Equivalent Join solution -

Display the details of il amployees hose salary is graster than their managers salary.

nuLL

nuLL

comprn

1001

oL

1002

oL

1003

comprn

1001

1002

1003

1004

MAKE
oel
oel
Lenove

Lenove

SELECT £.Td, E.Buare, E.DEPT, E.Salary FROM Enployes £ JOIN Enployes M ON E.Manager = M.Td AN

E.salary > N.Salary;

MODEL
Vostro
brecision
Edge

Horizan

image93.png
Let us understand the concepts of Correlated Subquery. We will be using the Employee table and Computer table as described below:

I ENAME SALARY
1 James pottar 75000

2 ethan MeCarty 50000

3 Emily Rayner 25000

4 ackAbraham 20000

5 Aysz Mohammad 40000
Exists -

DEPT MANAGER

1cp

nuLL
nuLL

2

comprn

1001

oL

1002

oL

1003

comprn

1001

1002

1003

1004

MAKE
oel
oel
Lenove

Lenove

MODEL
Vostro
brecision
Edge

Horizan

EXISTS keyword is used to check prasence of rows in the subquary. The main quary returns the row only i at least one row exists in the.
subguery. EXISTS clause follows short circult logic i.e. the query calculation is terminated as soon s criteria is met. As a result it is
‘generally faster than squivalent join statements.

SELECT Conpld, Nake, Nodel FRON Compter C WHERE EXISTS (SELECT 1 FROW Ewployee € WERE E.Conpld

.Comp1d;

image94.png
Let us understand the concepts of Correlated Subquery. We will be using the Employee table and Computer table as described below:

I ENAME SALARY DEPT MANAGER COMPID coMPID MAKE MODEL
1 James pottar 75000 0 o 1001 1001 oel Vostro

2 ethan MeCarty 50000 A nuw oL 1002 oel brecision
3 Emily Rayner 25000 e 2 1002 1003 Lenovo Edge
4 ackAbraham 20000 e 2 oL 1004 Lenove Herizon
5 Aysz Mohammad 40000 w1 1003

ot Exists -

NOT EXISTS i opposite of EXISTS i.e. it is used o chack absence of rows in the subquary. The main quary returns the row only i at lesst
no row exists in the subguery. It also uses short circut logic and is hence faster.

SELECT Conpld, Make, Mode] FRON Compyter C WHERE NOT EXISTS (SELECT 1 FROU Employee € WHERE ~
E.CompTd = C.CompId).

image95.png
Create Insert

Time

image7.png
ENaE SALARY BONUS DEPT
1 [damesoter | 75000 | 1000 | icp
2 | Emanmccaty oo | 2000 | ETA
3 | EmiyRayner | 25000 En
4 | sackpbranam | 3000 | 1000 | ETA

Relation is usually represented as:
Employee(ID, ENAME, SALARY, BONUS, DEPT)

No of records / rows / tuples:
Cardinality of the relation

image96.png
Current State Operations Desired State

SRR IR UPDATE Acct SET Balance = Balance - 100 SRR IR

100 e WHERE AcctNo = 100; 100 1100

i 5IE UPDATE Acct SET Balance = Balance + 100 101 700
WHERE AcctNo = 101; P o

102 400

image97.png
Current State Operations Desirea State

SET TRANSACTION NAME 'Balance_xfer';

100 1200 UPDATE Acct SET Balance = Balance - 100 100 1100

101 600 WHERE AcctNo = 100; 101 700

102 200 UPDATE Acct SET Balance = Balance + 100 102 200
WHERE AcctNo = 101;

COMMIT;

SET TRANSACTION NAME 'Incorrect_Update';
UPDATE Acct SET Balance = 500

WHERE AcctNo = 102;
ROLLBACK:

image98.png
‘After the final statement
has been executed

‘After successful completion

While executing

‘When normal execution After rolling back and
‘cannot proceed restoration to previous state

image99.png
Query Writing

Probiem ==
Diplay Teytd, TyName, Stock o thase toys whese stk s witin 10 and 15
(ot inclsiv) and fname containsmore than & eharactrs: [fomane| [cumtid

fprice | [ouantity

Join Agoregate Group GroupFilter Subquery Misc.

Step3 We'l use LENGTH() to find toys whose name contains more than 6 characters. Remember to use -
the AND operator so that both filter conditions are applied.

Query [SELECT ToyTd, Toyase, Stock FROM Toys WHERE Stock SETWEEN 10 AND 15 ANDILENGTH(TGsNaRE) 56

Ti003 Thundergot Car s

Ti005 Drummer 10

image100.png
Problem Transact

ety ety s, s, oty o o cmr i

name ands with 'y For the sslacted racords, f Ehe Custamer a8 i NULL [Tovhane| [Custid

iSplay CUSETYBE SIS Do case insensitive comparison. jcid__| [Tortd
fprice | [quaneiey

[stock | [rxncost

Join Aggregate Group Group Filter Subguery

Stepa We'l use NVL function to convert CustType on Harry's record from NULL to N

Query [SELECT Custld, Custnane, NVECCUSETYpEs"N) FROM Custoners WAERE LONER(CustNane) LIKE %y’

e R

102 Harry N
104 v

image8.png
ENaE SALARY BONUS DEPT
1 [damesoter | 75000 | 1000 | icp
2 | Emanmccaty oo | 2000 | ETA
3 | EmiyRayner | 25000 En
4 | sackpbranam | 3000 | 1000 | ETA

No of attributes / columns / fields:
Degree of the relation

Relation is usually represented as:
Employee(ID, ENAME, SALARY, BONUS, DEPT)

image9.png
+ domesrots | 70| tow | 0P
o [Evaruecay [soom w0 | m
o [Enmypaner | om o
+ s o [ooom [o0 [B

Relation is usually represented as:
Employee(ID, ENAME, SALARY, BONUS, DEPT)

NULL

image10.png
BONUS
1| James Potter 1000 | iop
2 | Etan mecary 2000 | Em
3| Emiy Rayner En
4| dack Abraham 1000 | Em

Relation is usually represented as:
Employee(ID, ENAME, SALARY, BONUS, DEPT)

Domain
{ICP, ETA, IVS}

image11.png
Attributes / columns / fields

Domain
{ICP, ETA, IVS}

BONUS
1 | damespoter | 75000 | 1000 | ice
/4 2 | EmanmMccaty | o000 | 2000 | ETA No of records / rows / tuples:
Rows / records / tuples = Cardinality of the relation
\ 3 | EmiyRayner | 25000 ETA
4 [vackabanam | 0000 | 1000 | EA_
.)
No of attributes / columns / fields:
Degree of the relation NULL

Relation is usually represented as:
Employee(ID, ENAME, SALARY, BONUS, DEPT)

image12.png
Domain Integrity
(columns)

|

<—Referential Integrity —
Entity Integrity __ (between tables)
(rows)

image13.png
Parent / master / referenced tal

Computer table

Child / referencing tabl

Employee table

COMPID MAKE MODEL ENAE DEPT comPID
1001 | et | vosio 1 | Jamespoter | 1cP | 001
1002 | el | Precision 2 | Emanmcoaty | ETA | NULL
1008 | Lenowo | Eage 3 | Emiymamer |EA | 1002

image14.png
Entity name ———> JEVCINGS
Primary key attribute ———>

Non-primary key attributes <

image15.png
allocated to

Employ
1d

salary

image16.png
works
Employ: Departnent

0
1d Dept1d

salary Location

image17.png
reports to

salary

image18.png
EMPLOYEE COMPUTER ENAME COMPID ALLOT_DT COMPID MODEL

D ooy cowen e
EnavE wopEL > Emn | NOL UL 1002 | Precson
f 3 emy |02 | emeots 108 | Lenowo

ER Diagram <]

Table Structure

image19.png
D O—L0«] cowrn | dames 12014
EnAwE MODEL 2 | et 1002 | Precson |1 oamote
" 3 | emy e Ege |2 | tomzon
ER Diagram
1004 | Horon | NULL | NULL

Table Structure

image20.png
) 50— 0] courn sames 1001 | vostio 1112014
EnAwE MODEL 2 | eman 1002 | Precsion © e | enmote
" 3 | emy 08| Eage 2 e | onmzore
ER Diagram
1004 | Horzon 2 001 | teneone

Table Structure

image21.png
1:1 1:N M:N
+0—O0+ +0—0< >0—0<
‘One-to-one relationship One-to-many relationship Many-to-many relationship

image22.png
H——— Exactly One
40— zero or one
>0—— Zero, One or More
S——— One or More

image23.png
EMPLOYEE COMPUTER
D

l+——o« comp
ENAME MAKE

SALARY MODEL

DEPT

image24.png
Foreign Key

@llocated Employ CompId Make Model Id Name salary CompId
d 1001 | Dell | vostro James | 75000 | 1001
Name 1002 | pell | precision 2 | Ethan | %0000 | nuLL

salary

image25.png
Foreign Key Foreign Key
works

Enploy P — Id Name Salary Deptrd P e —
Tanages

d . James | 75000 10 10 ETA Mysore 1

Nane 2 | Ethan | 50000 | 20 20 TS | Bangalore | NULL

Salary 5 Emily | 25000 | 10

image26.png
1d

reports to

salary

Foreign Key

1d salary Mgrid
James | 75000 | NULL

2 | Ethan | 0000 | 1

image27.png
Data Data
Definition Manipulation
Language Language
structured

Query
Language
Data Control Transaction
Control
Language

Language

image28.png
Create new database objects

Modify existing database objects

Definition Manipulation
Delete existing database objects Language Language
Query
Remove all rows from table Language
Data Control Transaction

Language

image29.png
/ Create new rows in tables

Modify data in tables

Definition Manipulation
Language Language Delete data from tables
Structured
Query
Language Retrieve data from tables
Data Control Transaction

Language

image30.png
Definition Manipulation
Structured
Data Control Transaction

Provide access rights on database

Withdraw access rights on database

image31.png
ous
Manipulation
Language Language
Structured
(oeL) S
i

Data Control Transaction
Language Control
Language

\

Save database changes and end transaction

Undo changes that are not committed
and end transaction

image32.png
Create new database objects

Modify existing database objects

Delete existing database objects

Remove all rows from table

Provide access rights on database

Withdraw access rights on database

Data
Definition
Language

Structured
Query
Language

Data Control
Language

Data
Manipulation
Language

Transaction
Control
Language

Create new rows in tables

Modify data in tables

Delete data from tables

Retrieve data from tables

Save database changes and end transaction

Undo changes that are not committed
and end transaction

image33.png
Precision Scale

NUMBER(3,1)
Precision
NUMBER(3) [9/(o]l9 . [0 NUMBER(3,2)
Scale is 0
=
NUMBER(3,1) 3 NUMBER(3, 3)

B .00
1o
Scale
A

Scale

image34.png
operators Operators
AT i

34+44%5% (9-7)=43 3+4%5%9-7=176
s 3 312 1 2 11 2

Sequence of evaluation Sequence of evaluation

image35.png
Table Name.

CREATE TABLE Student(
Column Name ———> StudentId INTEGER, < Datatype

FName VARCHAR2(10) ,
Do3J DATE 1
) size

DROP TABLE Student
Table Name
Note

Column names should be separated by commas
No two columns can have the same name

image36.png
Create Insert

Make 3 Selection -

Il Red g ith ampty string = 3 valus in NOT NULL column.

Vi Rezord. B [.
1003 Ferquson’

Space s valid

Empty St

image37.png
Creste Insert

Default Valie oot o record with the user specified valus for the column with DEFAULT option.
L e
voentio Fame 003
N vale 003 ack’ '05-Jan-2015"

1 row(s) created.

1001 Alex

o5-MAR-19
1002 Jahn nuLL
1003 ack os2an-15

image38.png
Creste Insert

ake 3 Selaction -

Valid Record 1
Valid Record 2
Nl Value
Duplcate Record

image39.png
Creste | Insert

Make 3 Selaction -

VA Re L cord which contains ¢
Invali Record
UDENTID
2001

mea

ORA-02290: check constraint (P788344.

image40.png
Creste Insert

ake 2 Selaction -

Vi Rezord.
ol Recoré
Dupiicace Record

image41.wmf

CREATE TABLE Marks(

 CourseId INTEGER,

 StudentId INTEGER,

image42.png
eate Table Syntax Err

We will now look at some common errors that occur while creating tables with constraints. The statement below has several syntax
errors. Lt us rasolva thess srrors step by ste

1 CREATE TABLE Student (

2 StudentId INTEGER PRIMARY KEY,

3 Fane VARGHAR2(10) CONSTRAINT NOT NULL,

4 Liane VARCHARZ(10) CHECK (Fame <> Lane),

S D0J DATE DEFAULT,

6 Gender CHAR(1) CONSTRAINT Student_Gender_Ck CHECK Gender INC'M', 'F'),
7 Personld INTEGER FOREIGN KEY REFERENCES Person(PersonId));

Errorat

e 30

ORA-02250: missing or invalid constraint name

image43.png
We will now look at some common errors that occur while creating tables with constraints. The statement below has several syntax
errors. Let us rasalva thess arrors step by step:

1 CREATE TABLE Student (
‘StudentId INTEGER PRIMARY KEY,

Plane VARGHAR2(10) CONSTRAINT Stud_Piane W NOT NULL,
Lane VARGHAR2(10) CHECK (FName <> Wame) ,

D03 DATE DEFAULT,

Gander CHAR(1) CONSTRAINT Student_Gender._Ck CHECK Gender INC'M', 'F'),
PersonTd INTEGER FORETGN KEY REFERENCES Person(PersonTd)

Error atline 4:

ORA-02438: Column check constraint cannot reference other columns

image44.png
We will now lock at some commn errors that cccur whils cresting tables with constraints. The statement below has seversl syntsx
errors. Let us rasolva these srrors step by step:

1 CREATE TABLE Student (
‘StudentId INTEGER PRIMARY KEY,

Plane VARGHAR2(10) CONSTRAINT Stud_Piane NN NOT NULL,

ane VARGHAR2(10), CHECK (Fane <> LNane)

D03 DATE DEFAULT,

Gander CHAR(1) CONSTRAINT Student_Gender._Ck CHECK Gender INC'M', 'F'),
Personld INTEGER FOREIGN KEY REFERENCES Person(Personid));

Error at line 5

ORA-00936: missing expression

image45.png
We will now look at some common errors that occur while creating tables with constraints. The statement below has several syntax
errors. Let us rasolva these srrors step by step:

1 CREATE TABLE Student (
‘StudentId INTEGER PRIMARY KEY,

Plane VARGHAR2(10) CONSTRAINT Stud_Piane NN NOT NULL,

ane VARGHAR2(10), CHECK (Fane <> LNane)

D02 DATE DEFAULT SYSDATE,

Gender CHAR(1) CONSTRAINT Student_Gender._Ck CHECK/Gander INCIMISIF1).
Personld INTEGER FOREIGN KEY REFERENCES Person(Personid));

2
3
n
s
5
7

image46.png
CREATE TABLE Student(
StudentId INTEGER CONSTRAINT stud_sid_pk PRINARY KEY, ®
FName VARCHAR2(10) CONSTRAINT stud_fname_nn NOT NULL, @
LName VARCHAR2(10) NOT NULL,®@

Gender CHAR(1) CONSTRAINT stud_gender_ck CHECK(Gender INC'M', 'F')),®
3] DATE DEFAULT SYSDATE,

ContactNo NUMBER(10) ~ UNIQUE, @@

PersonId INTEGER CONSTRAINT stud_pid_fk REFERENCES Person(Personld),®

CONSTRATNT stud_name_ck ~CHECK (Flame <> LName) 0@

)

CREATE TABLE Student(
Studentrd INTEGER,
FName VARCHARS(10) CONSTRAINT stud_sname_nn NOT NULL, 0@
LName VARCHAR2(10) NOT NULL,@ @@
Gender CHARCL),
003 DATE DEFAULT SYSDATE,
ContactNo NUWEER(10) ,
PersonId INTEGER,
CONSTRAINT stud_sid_pk PRIMARY KEV(StudentId), @
CONSTRAINT stud_gender_ck CHECK(Gender INC'M') 'E")), @ [T
CONSTRAINT stud_name_ck CHECK(FName <> LName), D@ o el et
UNZQUE (Contactio) , 0 @
CONSTRATNT stud_pid_fk FORETGN KEY(Personld) REFERENCES Person(Personld) @

Column v consrin:
[EOTE—.

A consrsis resd ot e
v name

‘Comgasic consrain can oy b
oaciad ¢t e v

image47.png
Alter statement 1

Alter statement 2

Alter statement 3

Alter statement 4

Alter statement 5

Alter statement 6

ALTER TABLE
ALTER TABLE
ALTER TABLE
ALTER TABLE
ALTER TABLE
ALTER TABLE

Student
Student
Student
Student
Student
Student

Clauses

ADD Address VARCHAR2(20)

MODIFY Address VARCHAR2(50)

RENAME COLUMN Address TO ResidentialAddress

DROP (ResidentialAddress)

ADD CONSTRAINT stud_sid_pk PRIMARY KEY (StudentId)
DROP CONSTRAINT stud_sid_pk

image48.png
Table Name

INSERT statement 1 INSERT INTO Employee

VALUES
(1,"'James Potter','01l-Jun-2014', 40000.00, NULL,'FSI','TA', NULL, 1)

INSERT statement 2 INSERT INTO Employee

(Id, EName, Do3J, salary, Bonus, Dept, Designation, Manager, CompId)
VALUES
(1, 'James Potter','0l-Jun-2014', 40000.00, NULL, 'FSI', 'TA', NULL, 1)

INSERT statement 3 INSERT INTO Employee
(Id, EName, DOJ, Salary, Bonus, Dept, Designation, Manager, CompId)

SELECT QUERY

image1.png
Knowledge
Synthesizing and decision making
e.g. Top Performer

Information

Processing of data
e.g. Agrade

Data

Collecting and organising
e.g. 90 marks

image49.png
Table name
Attributes (Relation)

Select query 1 | SELECT * FROM Employee

Selectquery 2 SELECT Id, EName FROM Employee

Select query 3 SELECT Id, EName FROM Employee WHERE Salary > 40000
- Required clauses 2 e T e

Optional WHERE clause
with conditions for selecting data

image50.png
We will now losk st some comman srrors whils using SELECT statement.

Employee Table
™ ENAME

1 James potter
2 ethan meCarty
3 Emiy Rayner
4 Jack Abraham

5 AyazMohammad

Make 3 Selection -

Table name ncorrect
Column name incaract
WHERE conditon incorrect

WHERE conditon corect

ooy

o19uN-14

o1-FEs-14

o1aN-14

o1uL1s

o1-aPR-14

75000

50000

25000

30000

40000

1000

1200

100

nuLL

oL

EPT

1ce

DESIGNATION

se

sse

i

image51.png
F W S D

FROM WHERE SELECT DISTINCT

image52.png
Table name
(Relation)

UPDATE statement 1 UPDATE Employee
UPDATE statement 2 UPDATE Employee

UPDATE statement 3 UPDATE Employee

SET salary
SET salary
SET salary

salary * 1.1
salary * 1.2

salary * 1.2, Bonus

attributes to be updated

WHERE Id
100 = WHERE Id

1
1

Sy

Optional WHERE clause

to filter rows

image53.png
aming DBMS and SQL

Employee Table Computer Table

1 EnAME ooy DEPT MANAGER cOMPID COMPID MAKE MODEL MYEAR
1 James potter 01N 1cP UL 1001 1001 Dell veso 2013
2 than ccarty ovFes1s ETA nuLL nuL 1002 Dall pracision 2014
3 Emiy Rayner olan-1a EA 2 1002 1003 Lenovo Edge 2013
4 JackAbraham o1 e 2 nuLL 1004 Lenove Horizon 2014
5 Ayaz Mohammad orapRie 1P 1 1002

| Forn Koy viltion - chi ale -

Any attempt to update a record with values that do not exist in the referenced table will result in a falure

[ione ews o7 e = 3005 e =3 [wr |

image54.png
ORA-02201: integrity constraint (P783344.5YS_C001867605) violated - parent key not found

image55.png
Employee Table
1 ENAME

1 James potter
2 Ethan MeCarty
3 Emiy Rayner
4 3ack Abraham

5 Ayaz Mohammad

ooy

o13un-14

o1-Fes-14

o13aN-14

o1u1s

01-aPR-14

Foreign Key Violation - Master table -

DEPT

1cp

nuLL

nuLL

Computer Table
compID. compID MAKE
1001 1001 oal
nuLL 1002 el
1002 1003 Leneve
nuLL 1004 Leneve

1003

MODEL
Vestro.
Pracision
Edge

Update statement fails if any attempt s made to update a valus in the master table that is referenced in child tables.

LPDATE Conputer SET COWPTD

ORA-0229

1005 WHERE COPTD

100

integrity constraint (P788344.5YS_C001867695) violated - child record found

MYEAR
202
204
202
204

image56.png
Table name
(Relation)

DELETE statement 1 = DELETE FROM Employee

DELETE statement 2 = DELETE FROM Employee WHERE Dept = 'ETA'
|

Optional WHERE clause
with conditions for selecting data

TRUNCATE statement TRUNCATE TABLE Employee

image57.png
Single row function produces one row of output for each row of input

e
UPPER (EName)

James Potter 75000 |5 [JAMES POTTER
Ethan McCarty | 90000 [/ ETHAN MCCARTY

Multi row function produces just one row of output, irespective of the number of rows of input
EName Salary
sum(salary)
James Polter 75000 165000

Ethan McCarty | 90000

image2.png
s - shs
e oo

UDalanase DBMS UDalanase
v

“m “m Operating System

image58.wmf

SELECT City, MinTemp, CEIL(MinTemp) AS "Ceiling", FLOOR(MinTemp) AS "Floor", ABS(MinTemp) as "Absolute" FROM Weather;

image59.wmf

SELECT City, LENGTH(City) "LENGTH", LOWER(City) "LOWERCASE", UPPER(Cit

image60.png
123456738 1

.
oA TAEESE HALL

SUBSTR('DATABASE', 5) = 'BASE' SUBSTR('DATABASE', 3,3) = 'TAB'

678

image3.png
Utilities Data management
Data import / export, user Store, retrieve and modify data
management, backup, performance
analysis, logging and audits

Integrity Transaction support
Maintain accuracy of data Ensure modifications to

database must either be
successful or not done at all

Security Concurrency control
Access to Simultaneous data access
authorised users only provided to users
Recovery

Recovery mechanism for
data so nothing is lost

image61.wmf

SELECT City, SUBSTR(City,1,4) FIRST4, SUBSTR(City,2,10) TEN_FROM_2, SUBSTR(City,3) ALL_FROM

image62.png
Make 3 Selection

Min, Max and Sum.
Coune
Countwith Distines

g

image63.png
SQL CASE statement Python if-elif-else statement

CASE Designation if designation == 'SE':
WHEN 'SE' THEN Salary * 1.2 salary = salary * 1.2
WHEN 'SSE' THEN Salary * 1.1 elif designation "SSE':
ELSE Salary * 1.05 salary = salary * 1.1

END else:
salary = salary * 1.05

image64.png
Sorted by DEPT, asc

DEPT SALARY

Sorted by DEPT, desc

DEPT SALARY

Sorted by DEPT, asc

Sub-sorted by SALARY, desc

DEPT SALARY

F el - e
== = BZ2
T -
: 2
do | e
= ks =
=] B EE

12
13
21
22
a1
a2

IE
12
21
22
23
a1
32

Sorted by SALARY, desc
Sub-sorted by DEPT, asc

DEPT SALARY

ET

ETA | 50000
s | 50000
A | 30000

-2

icP

30000

1

image65.png
ORDER BY example 1
ORDER BY example 2
ORDER BY example 3
ORDER BY example 4

ORDER BY example 5

SELECT 1Id,
SELECT 1Id,
SELECT 1Id,
SELECT 1Id,
SELECT 1Id,

EName,
EName,
EName,
EName,

EName,

salary
salary
salary
salary

salary

FROM
FROM
FROM
FROM
FROM

Employee
Employee
Employee
Employee

Employee

ORDER
ORDER
ORDER
ORDER
ORDER

BY
BY
BY
BY
BY

EName

EName, Salary

EName DESC

EName ASC, Salary DESC
2, 3

